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MOBILITY POWER FLOW ANALYSIS OF AN L-SHAPED PLATE STRUCTURE ECTED

TO DISTRIBUTED LOADING
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ABSTRACT

An analytical investigation based on the Mobility Power Flow

Method is presented for the determination of the vibrational response

and power flow for two coupled flat plate structures in an L-shaped

configuration, subjected to distributed excitation. The principle of

the Mobility Power Flow (MPF) method consists of dividing the global

structure into a series of subsystems coupled together using mobility

functions. Each separate subsystem is analyzed independently to

determine the structural mobility functions for the junction and

excitation locations. The mobility functions, together with the

characteristics of the junction between the subsystems, are then used

to determine the response of the global structure and the power flow.

In the coupled plate structure considered here, mobility power flow

expressions are derived for distributed mechenical excitation which is

independent of the structure response. However using a similar

approach with some modifications excitation by an acoustic plane wave

can be considered. Some modifications are required to deal with the

latter case are necessary because the forces (acoustic pressures)

acting on the structure are dependent on the response of the structure

due to the presence of the scattered pressure.

i. INTRODUCTION

Structural power flow methods, both experimental and analytical

have been used for the analysis of the vibration response and

structural power flow transmission of structural elements for a number

of years. Noiseux [i] published one of the earliest works on the

theory and application of the experimental measurement of structural

intensity. Other work by Pavic [2], Verheij [3] and Redman-White [4],

to name just a few, followed in developing methods and approaches to

measure structural intensity. One of the most used text on the

analytical description of structural intensity is the book by Cremer, °

Heckl and Ungar [5]. However, there is also a significant volume of

work by others such as Skudrzyk [6], Dieter and Ungar [7], etc. who
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either deal directly with structural power flow concepts or consider
topics which are very closely related.

The analytical description of the flow of structural intensity
through connected structures was formalized in the work by Goyder and
White [8], Verheij [9] and later on by Pinnington and White [i0], who
developed expressions that described the structural intensity flow
between connected components of a structure in term_ of--m_bility
functions of the connected structures. The work done in these
references mainly addressed point connected structures and/or
structures of infinite extent. Important contributions from these
works are the demonstrated potential of the power flow techniques to
describe the behavior and the interaction between connected structures
and the potential of these techniques to track the flow of power which
can lead to important information in the control of the response or
radiated noise from a structure.

This approach, the use of structural mobility functions to
describe the flow of structural intensity between coupled structures,
can be used as an analysis tool to describe the dynamic response of
complex structures. Referring to this approach as the Mobility Power
Flow (MPF) method, it would be similar to such other analysis
techniques such as Statistical Energy Analysis (SEA) or Finite Element
Analysis (FEA) . In the MPF approach the global structure is
considered to be made up of a number of connected substructures or
subsystems, which represent either physical partitions in the global
structure or different wave components that can propagate through the
structure. This is identical to the substructuring used in the
application of SEA. The same advantages of SEA would therefore apply
for the MPF method. That is, if modifications are made to any one of
the subsystems, only the evaluation of the terms associated with that
subsystem and the interaction analysis need to be repeated.

The difference between SEA and MPF is that, while in SEA the
coupling between the substructures is described in terms of a coupling
loss factors, which do not take into consideration the modal behavior
of the substructures, in the MPF method the coupling is described by
the mobility functions which can be made to represent the modal
behavior. At high frequencies the two techniques would converge onto
the same result, except that the SEA method is much more efficient
computationally. However, at medium to low frequencies, because of
the modal response of the structure, the behavior of the structure can
significantly deviate from the mean average response, as obtained
using an SEA approach. The MPF approach retains a description of the
modal behavior of the structure and therefore can give better results,
closer to the actual behavior of the structure. The MPF method can be
more appropriate in these medium frequencies, provided the structure
can be accurately modelled.

Compared to FEA, the MPF method has the advantage of the

substructuring which is significant for large complex structures. The

results obtained by FEA and MPF are identical. However, the MPF

method is not an exclusive tool for the determination of the power

flow or response of a complex structure, but a complementary tool that

can be used together with these other techniques. The results

obtained by the MPF can be matched to results obtained using FEA at

low frequencies and SEA at high frequencies [Ii].

The MPF technique describes the structural power flow between the

subsystems in terms of the structural mobility functions at the

excitation locations and at the junctions between the subsystems. The

implementation of this technique requires prior knowledge of these

mobility functions. Depending on the type of structure and the number

of subsystems used in describing the global structure, the number of

mobility functions to be determined can be significant. In the case

of periodic or quasi-periodic structures, the mobility functions of

each of the subsystems will in general be identical and the

application of the MPF method is particularly efficient for these
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types of structures [12]. In reference [12] the application of the
MPF method to the analysis of a periodic beam with a finite number of
spans is demonstrated.

2. POWERFLOWIN AN L-SHAPED PLATE

In the introduction a general discussion on the MPF method was

presented, where most of the cited work dealt with either point
connected substructures or alternatively, if line connections are

considered the structures are considered infinite in extent. In this

section the development of the expressions for the power flow between

two finite plates joined along a common edge to form an L-shape are

presented. The loading on one of the plates is considered to be a
distributed mechanical load, where the load is independent of the

response of the plates. The case of point loading is a special case

of distributed loading where the distribution function can be

mathematically represented by a Dirac function. Since results have

been obtained for an L-shaped plate with mechanical point loading in

[13], the results from this analysis for the distributed load will be

compared to the results obtained for the point loading before other

examples of distributed loading will be considered to verify the

analysis.
In deriving the power flow expressions the following assumptions

are made :

(a) The plates are thin compared to the minimum wavelength.

That is shear deformation and rotary inertia are

neglected.

(b) Only one type of waves, bending waves are considered.

(See comments in the conclusion regarding other wave

types) .

(c) The junction between the two plates is pinned. Since

the two plates are connected at right angles, and in-

plane waves are not considered, this assumption greatly

simplifies the analysis.

(d) The junction between the two plates is rigid, that is

the angle between the plates is always 90 degrees.

(e) The remaining edges of the two plates are simply

supported, that is with zero bending moment and
deflection.

In the case of the L-shaped plate (figure i) with only bending

waves, the MPF model consists of two plate substructures. Coupling

between the two substructures is defined in terms of the mobility

functions of each of the two substructures considered separately. For

two coupled general subsystems (figure 2) the input and transfer power

flow expressions are given by [I0]:

i

Power. IF(f) l2 Real
input M 1

MI2M21

M 2 + M3

(1)

i

Powertran s IF( f) 12

M21 12 Real[ M3 ]
M 2 + M3

(2)

where Mi; i=I,2 and 3, are the input mobilities at locations I, 2 and

3 respectively, MI2 and M21 are the transfer mobilities between
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locations 1 and 2 and IF(f) l2 is the power spectrum of the excitation
load.

Extending these equations to the case of the two plates joined
along a common edge to form an L-shape, with a distributed load on one
of the plates, the loaded plate will be referred to as the source
plate and the other plate is the receiver plate, the general form of
the expressions will not change but the definition of the mobility
function changes since these become functions of the spatial
coordinates x and y. Also, because of the load distribution on the
surface of the source plate, and the line junction between the two
plates, integrals over the surface and the length of the junction have
to be taken to determine respectively the input and transferred power.

The integrals in the power flow expressions, can complicate the
use of the MPF technique for any general structure. However, a way
around these integrals is to use a spatial or modal decomposition. In
this way, the same expressions for the power flow as in equations (i)
and (2) can be used, with the exception that the mobility functions in
these expressions would represent mobility functions either in the
wavespace domain - the spatial transform would transform the spatial
coordinates into wavespace coordinates - or the modal domain. For the
L-shaped plate considered here, with the edges simply supported, a
modal decomposition can be used and the two equations (i) and (2) can
be rewritten in the form:

Powerinput Real Fmn MI
2 4 mn

m,rl

a _ M21m

2 m M2 + M3
m m

Xb+ }IFm '_ f(y) Ml2m(Y) dy

O

(3)

Power
trans

2
m

M21 Fm
m

M 2 + M 3
m m

2

Real [M3m ] (4)

where m and n are respectively the mode number for the x and y

directions, that is m is along the junction and n perpendicular to the

junction, and a and b are the dimensions of the plates (figure I). If

F(x,y) is the surface distributed load, then in equations (3) and (4)

the following definitions apply;

F(x,y) - F f(x)f(y) (5)
O

fa I 1m_x

F F° f(x) sin dx (6)m

a
o
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b

f(y) sin dyFn

b
b o

(7)

Fm n = Fm Fn (8)

The mobility functions in equations (3) and (4) are defined

according to the assumptions made for the L-shaped structure. A

generic approach can be used but this will make the analysis

unnecessarily complicated. Therefore, M2m and M3m are input modal

mobility functions defined by the ratio of the mode m component of the

rate of change of slope (angular velocity) at an edge of the plate, to

a line moment applied along the same edge. The moment distribution

along the plate edge is in the form of the eigenfunction for mode m.

Mlm n is the input modal mobility defined as the ratio of mode (m,n)

component of the transverse velocity on the surface of the plate, to

an applied distributed surface load with the same distribution as the

eigenfunction for mode m,n. M21 m is a transfer mobility defined as

the ratio of the mode m component of a plate edge angular velocity, to

the mode m component of an applied distributed load on the surface of

the plate. Ml2m(Y ) is also a transfer mobility defined by the ratio

of the mode m component of plate surface transverse velocity at any

point y, to the mode m component of an edge moment.
As can be observed from these definitions of the mobility

functions, these do not consider the global structure (L-shaped

plate). Each mobility function is defined with reference to a flat

plate substructure. Some restrictions are imposed on which mobility

functions are used in the analysis, but this is solely for the purpose

of simplifying the problem for this presentation. A more general

model can be used if so desired [12].

The analysis of the global L-shaped structure is therefore reduced
to that of the substructures. The total behavior - power flow - of

the global structure is determined through the use of equations (3)

and (4).

3. MOBILITY EXPRESSIONS

The evaluation of the mobility functions Mlm n and M21 m can be

achieved by considering a plate structure with a distributed load

(figure 3). Solving for plate equation of motion,

and

jf i

MI mn (9 )

mn Fmn 2_ph [ f * ] 2f2mn

M21
m

where

8m jf _ (-i) n n Fn

Fm 2phb n [ f * ] 2f2mn

(i0)
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* i
fmn

2_
(ii)

and Umn is the mode m,n component of the plate surface displacement,
0m is the mode m component of the angular displacement at the edge of
the plate and D* and ph are the plate flexural rigidity and surface
density respectively.

To evaluate the mobility functions M2m, M3m and MI2m a plate
structure with a distributed edge moment is considered (figure 4). In
this case the following mobility functions are obtained [13],

M2 - M3
m m

e j
m

T
m

k2 kI

tan(k2b) tanh(klb)

(12)

M12 (Y)
m

Um(Y) J

T
m

sin(k2Y) sinh(klY)

sin(k2b) sinh(klb)

(13)

where Tm is the mode m component of the edge moment and kland k 2 are

defined by:

k12 . 2k2 + k2y ," k2 - ky

k m=/a k 2
x y

D

k2 (14)
x

4. RESULTS

The results that will be presented for the power flow consider the

L-shaped plate with the characteristics shown in figure (i). The two

plates forming the L-shape are identical. This condition is selected

to simplify the analysis and is not a restriction on the application

of the MPF method. Two loading conditions are considered; (a) a point

load and (b) a uniformly distributed load. The power flow results,

input and transferred are normalized with respect to the total applied

load.

4.1 Point Load

The force is in this case described mathematically by;

F(x,y) = F o 6(X-Xo) 6(y-y o) (15)

and
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F F sin sin (16)
mn o

ab

where x o and Yo are the x and y coordinates of _-J_nt of

application of the load. If the load is applied at the center of the

plate (x o = a/2 and Yo = b/2), then only odd values for m an n are

allowed. Substituting in equations (3) and (4), the results obtained

for the input and transferred power, when the load is in the center of

the source plate, are shown in figure (5). Comparing these results to

those obtained in reference [13], the two sets of results are

identical. This verifies the formulation of the power flow

expressions in the form shown in equations (3) and (4).

4.3 Uniform Distributed Load

The force applied on the source plate is described by:

F(x,y) = F o (17)

f(y) = 1.0 (18)

and

16 F
F - o
mn (19)

2
(2m + I) (2n + i)

The solution follows in the same way as for the point load case.

The results for the power flow are shown in figure (6).

Comparing the results for the power flow obtained for the point

load with the results obtained for the distributed load, the following

similarities and differences can be observed. First, the modes

excited by the two types of loading are identical. This is expected
since both loading conditions are symmetrical about the center of the

source plate. Second, the general level of the power flow for the

distributed load case decreases with frequency, while that for the

point load does not decrease. The reason for this can be

mathematically described by the inverse dependency of the modal

components of the distributed applied load on the mode number for the

case of the distributed load (equation (19)). Physically this implies

that the higher frequency modal components of the load are suppressed.
The results for the distributed load would be similar to those for

excitation by normal incidence acoustic plane waves, if the scattered

pressure component is neglected.

5. CONCLUSION

The mobility power flow approach for the analysis of coupled plate

structures with distributed load excitation has been described in this

paper. Some assumptions has been made regarding the MPF model for the

L-shaped plate. With regards to the selected boundary conditions,

these can be relaxed to deal with other boundaries but the analysis

can get more complicated. If other boundary conditions are selected

for which a modal decomposition is possible, then the same type of
analysis can be performed.

If in-plane waves were to be considered, the MPF method can be o

used, but in this case each wave component would be described by a

separate subsystem. That is, the L-shaped plate would be modelled by

six subsystems, three for each plate, representing respectively

7
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bending waves, in-plane longitudinal waves and in-plane shear waves.

The power flow expressions would in this case include more mobility

functions and it would be more appropriate to use a matrix

representation [12] for the solution to the problem. Because no in-

plane waves are considered here, the junction between the two plates
is not allowed to have lateral movement. Only rotational motion is

allowed. Therefore, the assumption of a pinned condition at the

junction already includes the fact that no translational motion is

allowed at the junction, which reduces the size of the MPF model,

requiring a lower number of mobility functions.

The overall conclusion that can be made is that power flow

techniques can be used as an analysis tool similar to other method of

structural analysis. The need to evaluate the mobility functions can

make the approach difficult to implement on certain types of

structures, but for beam, plate and periodic structures, the MPF

method can represent a very powerful tool for the estimation of the

modal behavior of the structure. The MPF method evaluates the power

flow through the coupled structure. The understanding of how the

vibrational power is propagated through a build up structure can in

certain instances, be more of interest than just the vibrational

response at some point on the structure.
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Material: Aluminium

Density: 2710 Kg/m _

Elastic Modulus: 72 GN/M 2

Thickness: 0.00635m

Dimensions: a= 1.0m,

b=O.5m,

Loss Factor: 0.01

y 0

Figure 1. L-shaped plate structure showing plate

characteristics.
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Figure 2. General mobility power flow model.
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